

Design and application of silicon-organic hybrid (SOH) modulators

¹Karlsruhe Institute of Technology (KIT: IPQ^a, IMT^b, IBCS-FMS^c, IOC^d),

Karlsruhe, Germany

^aInstitute of Photonics and Quantum Electronics (IPQ)

^bInstitute of Microstructure Technology (IMT)

^cInstitute of Biological and Chemical Systems (IBCS-FMS)

^dInstitute of Organic Chemistry (IOC)

²SilOriX GmbH, Karlsruhe ³erConTec GmbH, Wachenheim, Germany

Wolfgang Freude^{1a}, Alexander Kotz^{1a}, Hend Kholeif ^{1ab}, Adrian Schwarzenberger^{1a,2}, Artem Kuzmin^{1b}, Carsten Eschenbaum², Adrian Mertens², Sidra Sarwar^{1bcd}, Peter Erk^{1a,2,3}, Stefan Bräse^{1cd}, Christian Koos^{1ab,2} Email: w.freude@kit.edu

Electro-optic modulators are important for realizing advanced functionalities of photonic integrated circuits (PIC). Such PIC are preferably fabricated on silicon using CMOS processing. However, silicon lacks a second-order nonlinear susceptibility and therefore a Pockels effect, preventing a native implementation of modulators. This deficiency is overcome when employing the plasma dispersion effect: Injecting or depleting carriers in a waveguide section changes its refractive index. However, silicon can be complemented with a Pockels-type organic electro-optic material that fills a silicon slot waveguide between its rails. An applied voltage changes the effective refractive index and thereby the phase of a propagating optical slot mode. Such SOH phase shifters form the arms of an interference-controlled highly efficient Mach-Zehnder modulator (MZM). We discuss the organic material's long-term stability, elaborate on the design of SOH MZM, and define performance metrics for comparing different modulator realizations. We also refer to unconventional applications, e. g., to an optical read-out for cryoelectronics.

Wolfgang Freude is a Professor at the Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology (KIT), Germany, a Distinguished Senior Fellow at KIT, and an Honorary Doctor of Kharkov National University of Radioelectronics. His research activities are in the area of optical and wireless high-data rate transmission, employing

integrated optics with a focus on silicon photonics. He has authored and co-authored more than 330 publications, a book and 7 book chapters.